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In this paper we investigate the influence of an isochronous sUSpt?nSiOn, 

which was used for astronomical clocks by Fedchenko (AChF) [ 1 1 on the 
period of pendulum oscillation. The formula whieh is obtained for the 

period allows one to estimate the influence of changes in the suspension 
parameters on the isochronous property. 

1. As is well known, the period of oscillation of a pendulum is given 

by the formula 

IT = T, ( I+- g + . . .) / 
where 8, is the angular amplitude and T,, is a quantity which is inde- 
pendent of 8, (the period to the zeroth order of approximation). Aniso- 
chronism, i.e. the dependence of the period on the amplitude, is one of 
the most important sources of inaccuracies in pendulum clocks. ‘Ihis in- 
sufficiency was overcome to a certain extent by Fedchenko 11 1 whose 
clocks differ from existing astronomical clocks in their simplicity and 
high degree of accuracy. This was realized through the use of a new type 
of pendulum suspension - the so-called isochronous suspension. The sus- 
pension consists of three plane springs placed at the position of eqni- 
librium of the pendulum in a single plane, perpendicular to the plane of 
oscillation of the pendulum. The upper ends of the springs are embedded 
in the body of the clock, while the lower ends are rigidly attached to 
the pendulum arm (Fig. 1). The two short side springs are completely 
identical and their symmetrical location guarantees the absence of trans- 
verse bending during the pendulum oscillation; for the subsequent con- 
sideration they may be replaced by a single spring of double thickness. 
‘Ihe middle spring is longer than the side springs, and the points of 
support of its upper and lower ends are correspondingly displaced above 
and below the points of support of the ends of the short springs. ‘Ihe 
isochronous action of the clock is regulated by an upward or downward 
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shift of the long spring along the longitudinal axis of the pendulum. 

Fig.. 1. 

We note in passing that although all the 
springs are thickened at their ends we shall 
consider their transverse cross-sections to 
be constant, and shall take as the lengths of 
the springs the lengths of their thin portions. 

We take as the origin of coordinates the 
point of support to the body of the clock of 
the upper end of the short spring, while as 
independent variables we take the coordinates 
of the lower end a1 and & and the angle of 
inclination 6 (Fig. 1). Neglecting the kinetic 
energy of the suspension, whose mass is much 
smaller than the mass I of the pendulum, it 
is easy to write the Lagrangian function for 
the system 

L=$m(L2+R2)e2t_~m(&12-/-~12) 

+ mLB (& cos 0 - a, sin 0) - 

mg (4 - a,) - mgL (1 - cosq-uu,- u, 

Here L is the distance from the point of support of the short spring 
at the pendulum arm to the center of gravity G, R is the radius of gyra- 
tion, chosen so that the moment of inertia with respect to G is equal to 
IRR’, 1, is the 1 ength of the short spring, U, and Cl, are the energies 
of deformation of the short and long springs of the suspension, respect- 
ively . 

Denoting by Xi, Yi and Ni ( in units of weight of the pendulum) the 
forces and moments which act on the pendulum from the sides of the short 
(i = 1) and long (i = 2) springs, we obtain the equations of motion of 
the pendulum: 

aI - LBsin8 - ~82 cos 8 = g (1 - x, - .x2) 

j’15L’Bcos8-LL82sine=--(Y,+Y,) (1.1) 

R2/g.~+N1+N2=L(Y,cosO-~X’,sinO)~(L-p)(Y2cosO-~;i;,sin8) 

Here p is the displacement of the lower end of the long spring along the 
pendulum rod. Having obtained Xi, Yi and N, from a consideration of the 
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spring deformations, one could attempt to obtain an expression for the 

period of change of 8 from (1.1). However, within the accuracy which in- 

terests us, the period may be obtained by the use of a method which is 

similar to that which was worked out in 12 1 for the ordinary single- 

spring suspension. 

2. In the design under consideration R << L, and hence we may restrict 

ourselves to an investigation of the mathematical pendulum (R = 01. The 

third of Equations (1.1) is transformed into an equation coupling the 

variables. Moreover, I, << L, and hence we shall assume that the change 

in al is determined only by the angle of inclination, thereby excluding 

from consideration the vibration of the point of attachment of the 

pendulum to the suspension. Of the three variables, only one remains in- 

dependent. We choose for this 0. 

Assuming that the amplitude of oscillation of an astronomical clock 

is ordinarily l-3', that is, 8 << 1, we solve the problem by the method 

of successive approximations. To the zeroth order, the system (1.1) is 

x,o+x,o=1 

pI+L8=-g(Y,"+Yzo) (2.1) 

N,O + lV,O = L (Y,O - X10f3) + (L - p) (Y*O- X20e) 

where the index O denotes terms of the corresponding order in 6 in the 

expressions for Xi, Yi and Ni. 

It is obvious that the Xi are even functions of 8 and that the X.' 

are constants which should be equal to the corresponding values in lhe 

position of equilibrium. Here the springs are unbent but are extended by 

a certain amount, so that the length of the short spring is 1, and that 

of the long spring I,. lhe first relation (2.1) and the condition of 

equilibrium of extension of the springs 

h[=$ ( K. - EiSi \ 

1 
a - li mg / 

(where Ei, Si are the Young's moduli and the cross-sectional areas of the 

springs, respectively (i = 1.21) allows one to write 

xi0 = Ki Xl” El & 12 
Kl+K, ’ X2” - = EnS211 

and 

For the suspension which is used in the AChF clocks E, = E,, S, ‘I S, 
I, >> Z,, that is, X1" >> X2". 

In the approximation under consideration, we may assume that the spring 

lengths do not change and determine Yi and Ni from the equations for pure 
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For the short spring 

rb:;:n:art II, (18.1), (18.6) 

(Fig. 1) this has the form (for example, 

and (19.3)) 

Here b, and h, are the width and thickness of the spring; 0 << p << I,. 
0 << +<< 8, where p = OP is the distance from 0 to the generic point 

f; and 4 is the angle of inclination of the tangent with the x-axis at the 

point P. At the ends of the spring the following conditions must be 

satisfied: 

?I = [sin v dp, 
11 

cp (0) = 0. C+T (II) =m 0. 5, = ‘cosqdp 
I 

(2.3) 
0” 0 

In the case at hand 6 << 8 << 1, and to the zeroth order approximation 

(2.2) is 

I d2T” -_ 
o,‘? dpz = To - ylc, (2.4) 

Correspondingly, from (2.3) we have the boundary conditions 

c+F (0) = 0. ccc (Zl) = 0, 3, = [qi’dp. alo = I, (2.5) 
; 

Gith the aid of (2.5), the solution of (2.4) has the form 

where 

Introducing the distance from 0’ (Fig. 1) to the generic point 

Q, q = O’Q for the long spring, and denoting the angle of the tangent 

with the x-axis at the point Q by $, it is easy to obtain an equation, 

together with its solution, which is analogous to (2.2) through (2.7), 

respectively. In order to obtain 4’ and $” in final form, we use the 

third of relations (2.1). As is well known (for example, 13 I) 

‘Ihe quantity Nz” is determined analogously. Using p2 = & + ~6’ (Fig.1) 

in the approximation under consideration, we obtain & = Xe,where, under 

the conditions L >> I, >> Z,, Xl0 >> X2’, 2u2 > 1 and 2ul >> 1, which 

usually obtain 
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Substituting & into (2.71, we have 

Then c$O= ~6, where 

(2.11) 

In an analogous manner, 

where Wz and v differ from 

P to 4. 

for the long spring yZo 

1Y, and K by a change of 

The second of Equations (2.1) transforms into 

= W,f3 and $O = ~0, 

index from 1 to 2 and 

Hence, the zeroth-order period is 

To = 24 g(WI~~-+~WzXe.) (2.12) 

Under the restrictions used in the derivation of (2.91, it can be 

shown that WIX1" + W2Xzo = 1, hence 

To= 24y 

ForE,+ 0, u2+= 

To = 2441 /g)[L $- &(I ---tmhU1/2ui)] 

which coincides with the result obtained in [2 1 for the ordinary sus- 
pension. 

3. To see the effect of the suspension on the anisochronous oscilla- 

tions of the pendulum, we examine the following (first) approximation. 

In this approximation, the system of equations (1.1) has the form 

(I/ 6) [- ar + L (ee + @)I = x,1 + x21 

ijl $- Le -L(@/ 2 + 6X3") = - g(Y,O + YZO + Y,i + Y,l) (3-l) 

(sl”+ n-,I) + (Na”+ iV,l) = (1 -P/2) [L(Y," + Y,l) + (L - p)(Y,"j- Y,i)] + 

-i- (e-es/S) [L(X," + X,l) + (L -P) (X2" + X,')I 
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lleere, the upper index 1 denotes terms in Xi, Yi and Ni of the cor- 

responding order with respect to 8. 

Assuming that the Xi1 are known and that the change of the spring 

lengths is insignificant, we find Yi' and Nil, respectively, from the 

equations of bending of the springs. To do this, we set Q = Go + 4' in 
Equation (2.'2); then for the determination of +' we have 

where 

With the notation al = aI0 + all, we obtain from (2.3) and (2.5) the 

boundary conditions 

cp'(O)=O, 'pl(Z,)=O, ~~,_d%~~a~)dp-_o, x,'= -$XZdp (3.3) 

0, 0’ 

Solving (3.2) by the method of variation of parameters and using (3.3), 

we find 
11 

1= 01 
Yl 2u1- 2tadUq Si 

7 (PI [I - 
cOsh(~l P - Ud ] + ; (33) dp 

COdlUl 
” 

It is clear that 

By entirely the same method one may find $J', yzl and nzl. 

Using the first and third of relations (3.1), we express p1 in terms 

of 8 to the order of 8 3. Substituting the expression which is obtained 

into (2.7) and then into the second of Equations (3.1), we bring it to 

the form 

(L + h) e + g (w-,x,” f Tif,XaO) 8 = F (‘3) 

F(8) = - + ((XrlJICz) -+ Xs1J2(2) - Xa' p)O - '$ -. 

_ g;_ (X,0 Jr@) -i_ XaVa(4)) -i_ pea .&o :+ - $ IT;,) -+ 

(3.4) 

(3.5) 

where 
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1‘ 12 
J (?I) 

2 = vn dq 
0 

For the determination of the Xi1 we introduce the quantities 

Q = (02/2)(1: a = JIc2) _ r _ J,,'") I,' _ 

Bpression (3.3) for czll shows that u characterizes the difference 

between the elevation of the end of the short spring together with the 

portion of the arm of length p and the end of the long spring if they 

were raised independently, and if the forces Xi acting on them were con- 

stant and equal to X1". (For approximate estimates we note that by re- 

placing the bent springs by straight lines it is easy to obtain a = (Z,- 

Z, - p)(Zl + p)/Z,.) In reality, the spring ends are attached to the 

pendulum arm and cannot rise independently; and depending on the design 

of the suspension two cases are possible. 

1) The case o > 0; that is, the end of the long spring should be addi- 

tionally raised or the end of the short spring lowered. If the bending 

energy is much smaller than the change in energy of the initial extension 

of the springs, then it can be assumed that.the necessary matching of the 

position of the lower ends of the springs is attained only at the expense 

of their contraction or extension. Inasmuch as in our case K, >> Ii,, the 

contraction of the long spring plays a basic role, while a smaller one is 

played by the extension of the short spring. It may be supposed that the 

force that acts on the long spring is changed to 

x21= -&a(l-X2/K,) (3.6) 

2) 'Ihe case D < 0; for K, >> K, it is basically necessary to lower 

the end of the long spring. This can be accomplished not only at the ex- 

pense of its extension, but also at the expense of the form of the bent 

spring, and in this case it is necessary to say what sort of deformation 

plays the larger role. 

Y/e return to the first case (as will be seen it is expressly this case 

that occurs). From the first of Equations (3.1) it follows that jX,l + 

X,11 Q 6 2, while I!U,'l 2, 8 ' (I, - Z, - p)/AZ; nut usually AZ <C I,- 

Z, - p, hence Iill + X,'I << 1.X21 

Xl1 = - X2'. 
/ . This allows one to assume that 

‘J2(n) < Z 
In addition, K < 1 and v C 1, that is, Jltn) < Z, and 

2, and also "i" G 1, ) ::li / - 1. iience, all of the terms in (3.5) 
are much smaller than the second and the first, whose denominators con- 
tain small quantities A I, and all except the second and first may be 
discarded: 
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F (0) = [ : -_*!g+!LJ] 

lhe solution of equations with small nonlinearities of 

has been worked out, for example, in [4 1. In the present 

rection to the period is obtained as 

“” _ 00” rl _ , 

TO. -- --x I (p -i_ p - J2y2j 

the type (3.4) 

case, the cor- 

(3.7) 

where 6, is the angular amplitude. Using (2.11), we obtain 

and analogously J,(‘), 

Formula (3.7) is easily obtained from an examination of the energy of 

the system. Upon deviation, the potential energy of the ordinary pendulum 

of length L is increased by approximately mgL(1 - cos 01, that is, not 

proportional to 13' but somewhat slower. Ihis leads to the presence of 

nonharmonic terms in the equations of motion and to anisochronous 

oscillations. Upon the inclination of the pendulum with the isochronous 

suspension, there occurs a redistribution of firces acting on the side 

of each of the springs and on the pendulum. If u > 0, then the force 

acting on the side of the long spring is decreased when the pendulum is 

inclined, corresponding to a decrease 

in the initial energy of extension 

AU, = - 1/8K2rnga204. At the same 

time, the extensional energy of the 

short spring AU, = 1/8(K22/K,)mga204 

is increased. For K, >> K, the energy 

of the entire suspension is decreased. 

The entire system (suspension and 

pendulum) is conservative, hence the 

decrease in the potential energy of Fig. 2. 
the suspension corresponds to an in- 

crease in the energy of the pendulum. 

'Ihe term l/24 mgL8, in the expression for the potential energy of the 

pendulum gives the correction to the period (AT)/ T,, = l/16 8', and in 
the present case it is simple to obtain a formula which coincides with 

(3.7). 

4 lie examine (3.7), ..e using numerical data that apply to the suspension 

of AChF clocks: El = E, = 2.1 x lo6 kg/cm', I, = 0.3 cm, 1, = 1.6 cm, 

b, = 0.8 cm, b, = 0.6 cm, h, = 1 x lo-' cm, h2 = 1.5 x lo-' cm; and, in 

addition, L = 100 cm, mg = 10 kg. 
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From (2.7), (2.9). (2.10) and (3.8). and likewise from analWOW ex- 
pressions for the long spring. one can compute the change in the iso- 

chronous property of the suspension as a function of the displacement p 
of the lower end of the long spring along the pendulum arm. The results 
of such computation are shown on Pig. 2. For p = pb = 0.5 cm, which cor- 
responds to a = 0.19 cm, complete isochronism of the oscillation is ob- 
tained and hT= 0. For p > 0.7 cm u = 0, and the above investigation is 

not valid. 

It should be remarked that Expression (3.6) is meaningful only when 
the change in the energy of compression (extension) of the springs in 
the suspension is much larger than the change in the bending energy. In 
[3, Part Ii, Sect. 30 ] it is shown that this condition is violated for 
& << h2 (for the long spring); for p = 0.5 cm, this corresponds to 
8, << lo, On the other hand, for a certain angle 6 = %,, the length of 
the long spring becomes equal to its length before extension, and for 
82 8, the change in the energy of the support is determined only by the 
bending of the spring, It is seen that the forces that are excited in 
this case are much smaller than those that are obtained from (3.6), and 

the isochronous property of the suspension should no longer obtain. 

From the condition AI= u it is easy to obtain 

which for p = 0.5 cm is about 3'. 

Formula (4.1) obtained above allows one to estimate the influence of 
a change of parameters over a region of,angles in which the oscillations 
are isochronous. For h’, >> K2, 8, ’ = (Z~~~g)/~u~~~). If the change in 

the suspension parameters does not violate the relationship between K, 

and K,, then it is clear from this expression that an increase in 1, or 

a decrease in S, leads to an increase in the region of isochronism. :-iow- 

ever, this is true only for small changes in these quantities, when it 

may be assumed that a is constant. 

In spite of a number of assumptions made in the solution and indicated 

above, an analysis of (3.7) leads to several conclusions. 

1) The isochronous property of the suspension is both a result of the 

extension (compression) and bending of the springs. In this, the iso- 

chronous suspension is different from the usual single-spring suspension 

C2 I, where the extension of the spring hardly changes and where the in- 

vestigation may be restricted to bendin a alone. In the isochronous sus- 
pension a basic role is played by the additional deformation of the long 
spring, which is associated with the incompatibility between the points 
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of support of its ends and the ends of the short spring El I. ‘he depend- 
ence in (3.7) on the weight of the pendulum, the arm length L, the trans- 

verse cross-section of the long spring Sz and its Young’s modulus E, 
agrees with experimental data. For E, = 0 the isochronous property of the 
support vanishes. 

2) ‘Ihe estimate which has been made shows that the oscillations can 
be isochronous only to angles of the order of 3’. In the experiments, 
isochronous oscillations were observed from 30’ to 40’ up to 2.5O to 3O, 
which agrees with the estimate. 

3) It is seen from the above graph that ATT(@) = 0 for p = 0.5 cm. In 
actual suspensions p can be adjusted, which regulates the degree of iso- 
chronism. Coolplete isochronism was actually observed for pa = 0.5 to 
0.6 cm. 

We extend thanks to L.M. Piatigorskii for help in the present work 
and to FM. Fedchenko for proposing the topic, consultations on the de- 
sign of the suspension and discussion of the results obtained. 
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